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Abstract— In this paper, we examine networks consisting
of multiple interacting agents that have the flexibility to join
or leave the network at any moment, which we term open
multi-agent systems (OMASs). Expanding upon the recently
introduced theoretical framework for analyzing the dynamic
characteristics of OMASs, we extend our study to encompass
agents with vector states and discrete-time evolution. A key
point of our work is the employment of the concept of ”open
stability” w.r.t. the infinity norm, which naturally makes the
distance between two points in the state independent of the
number of agents. This obviates the necessity for distance
normalization, as required by the standard Euclidean norm.
Within this framework, the main contribution of our work
is that of establishing sufficient conditions for the open sta-
bility of an OMAS, which include the boundedness of the
arrival/departure process and the paracontractivity of the
OMAS in the absence of arrivals/departures, thus generalizing
existing results for contractive OMASs. To underscore the
practical relevance of our theoretical framework, we present
the formulation of the dynamic max-consensus protocol for
OMASs. Through numerical simulations, we demonstrate the
alignment of this protocol with the theoretical findings outlined
in this manuscript.

Index Terms— Autonomous Agents, Open Multi-Agent Sys-
tems, Networks, Graph Theory, Distributed Estimation.

I. INTRODUCTION

The behavior of a large group of entities, such as robot
teams, networks of computing units, sensor networks, smart
grids, etc., can be captured by using the multi-agent sys-
tem (MAS) paradigm. The interactions among the agents,
influenced by sensing, communication, or physical coupling,
are represented by a graph reflecting the network structure,
where the nodes represent the agents and edges connecting
the nodes represent these interactions. While most of the
existing literature is limited to fixed-size networks, thus
assuming that no agent may join or leave the network as
time goes by, this article delves into the realm of open
multi-agent systems (OMASs), where the number of agents
within the network is time-varying. This characteristic is
prevalent in all real engineering applications like the Internet
of Things, vehicle platooning in multi-robot systems [1]–[3],
energy management in smart power grids [4]–[6], online
optimization in machine learning [7]–[10], consensus in
cooperative networks [11]–[15], and so on.
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The concept of open systems was initially considered,
nearly two decades ago, for networks of software agents in
computer science [16], addressing problems like trust and
reputation building [17], resilience against attacks [18], and
law specification [19]. In contrast, it has only recently gar-
nered attention in our control community [20]–[22], mostly
due to various conceptual difficulties in adapting control-
theoretic notions such as stability when the size of the
systems changes over time. Indeed, simple concepts like
the distance between two states become nontrivial when the
two states have different dimensions. Different strategies and
perspectives have been considered to overcome these issues,
such as embedding the time-varying set of agents in a time-
invariant superset while considering constant the state of the
agents that are not currently active [23]; exploiting gossip-
based interactions [24]–[26] or leveraging dwell times when
agents join/leave the network [13], [27] while achieving con-
sensus on specific metrics, such as the average, the median,
and the maximum, where the influence of additive nose has
been analyzed in [28]; formulating graphon models in infinite
dimensional spaces to represent arbitrary-size networks of
linear dynamical systems [29]–[31].

The novelty of our contribution consists in the formu-
lation of a general stability criteria for the class of “para-
contractive” OMASs by following the general framework
presented in [32], where proper definitions of state evolution,
equilibria, and stability are established for discrete-time
OMASs, together with stability criteria for the special class
of “contractive” OMASs. Differently from [32], the difficulty
in evaluating the distance between vectors in different spaces
S1 ̸= S2 is overcome by using the infinity norm instead of
the Euclidean norm (avoiding normalization of the distances
by the number of components) and by considering only the
components in the intersection of the two spaces S1∩S2 (to
avoid the need to define an “open distance”).

Structure of the paper. Section II contains background
material on graph theory and generalized definitions of
state evolution, equilibria, and stability for open networks.
Section III provides open stability criteria for the class
of “paracontractive” and “slowly expansive” systems. Sec-
tion IV formulates the dynamic max-consensus problem for
open networks and shows numerical simulations. Concluding
remarks are given in Section V.

II. BACKGROUND ON OPEN MULTI-AGENT SYSTEMS

An open multi-agent system (OMAS) consists of a time-
varying number nk of interacting agents at non-negative
discrete-times k ∈ N. In what follows, we provide the
necessary background on graph theory and open networks.



A. Open networks and graphs

The pattern of interactions among the agents in an OMAS
is modeled by a time-varying undirected graph Gk =
(Vk, Ek), where Vk ⊂ N is a time-varying finite set of
nodes modeling the agents, and Ek ⊆ Vk × Vk is a time-
varying set of edges modeling the point-to-point commu-
nication channels between them. The number of agents
nk = |Vk| ∈ (0,∞) is assumed strictly positive without any
upper bound. Two agents i and j are said to be neighbors at
time k if they share a communication channel, i.e., if there
is an edge (i, j) ∈ Ek. The set of neighbors of the i-th agent
at time k is denoted by N i

k = {j ∈ Vk : (i, j) ∈ Ek}
and its cardinality gives its number of neighbors, i.e., the
degree of node i at time k, denoted by ηik =

∣∣N i
k

∣∣. Note
that graphs are assumed to be without self-loops, i.e., i /∈
N i

k. Communications among the agents are assumed to be
bidirectional, which implies that the adjacency matrix Ak is
symmetric and the graph Gk = (Vk, Ek) is undirected at any
time k, i.e., for all (i, j) ∈ Ek then also (j, i) ∈ Ek. The
diameter δk of graph Gk at time k is the shortest distance
between the two most distant nodes in the network.

Due to the time-varying nature of the network, we identify
in the set of agents Vk the following subsets:

• Remaining agents Rk = Vk ∩ Vk−1: agents present in
the network at time k − 1 and time k;

• Arriving agents Ak = Vk \ Vk−1: agents present in the
network at time k but not at time k − 1;

• Departing agents Dk = Vk \ Vk+1: agents present in
the network at time k but not at time k + 1.

Note that, in general, the set of departing agents may contain
both remaining and arriving agents, who are instead disjoint:

Dk ⊂ Vk = Rk ∪ Ak, Rk ∩ Ak = ∅.

Moreover, we assume that new arriving agents are considered
as new ones and that departing agents never come back. At
time k, each agent i ∈ Vk is associated with a vector state
xi
k ∈ Rm and a vector input ui

k ∈ Rp; the vectors stacking
these variables are denoted by xk and uk, respectively. Since
components of xk and uk are only defined for those agents
in the network at time k, the sequences {xk : k ∈ N} and
uk : k ∈ N} are such that the points xk ∈ Rm|Vk| and uk ∈
Rp|Vk| have different dimensions at different times k, and
thus are called “open sequences”. The state of remaining
agents in Rk are updated according to a causal evolution
law f i : Rm|Vk| × Rp → Rm, while the state of arriving
agents in Ak need to be “initialized” according to some rule
hi : Rp → Rm and the state of departing agents in Dk are
left out from xk+1, yielding:

xi
k =

{
f i(xk−1, uk,Gk−1) if i ∈ Rk,

hi(ui
k) if i ∈ Ak,

k ∈ N\{0}, (1)

where x0 and G0 are the initial state and the initial con-
figuration of the network. Note that if the set of agents
does not change, that is Vk = Vk−1, then the self-map
gk : Rm|Vk| → Rm|Vk| ruling the “standard dynamics”:

xk=gk(xk−1) :=f(xk−1,uk,Gk−1), when Vk=Vk−1, (2)

where f = [f1; · · · ; f |Vk|].

B. Trajectory of points of interest: existence and stability

We are now ready to introduce the concept of the “tra-
jectory of points of interest”. This concept generalizes that
of “equilibrium point” for time-invariant and size-invariant
autonomous systems of the kind xk = f(xk−1), where a
point x̂ is said to be an equilibrium if x̂ = f(x̂). For
size-invariant systems xk = f(xk−1, uk) such that for each
input uk the system has a unique equilibrium point x̂k =
f(x̂k, uk), a “trajectory” corresponding to a sequence of
equilibrium points for different inputs uk, {x̂k : k ∈ N} ,can
be defined. For size-varying systems with inputs we can
do the same with x̂k = f(x̂k, uk,Gk−1) at each k ∈ N,
thus resulting in a “trajectory” of equilibrium points of
different dimensions, which we call the “trajectory of points
of interest”, originally defined by Franceschelli and Frasca
in [32, Definition 3.1].

Definition 1 (Trajectory of points of interest).
Consider an OMAS and assume that the standard dynamics
has a unique solution x̂k at each time k, namely,

x̂k = gk+1(x̂k).

Then, the open sequence {x̂k : k ∈ N} is called the “trajec-
tory of points of interest” (TPI) of the OMAS.

The existence of a TPI is guaranteed for some classes of
OMASs: in this manuscript, we consider the class of para-
contractive OMASs, whose trajectories exhibit a contracting
distance from the TPI as time progresses.

Definition 2 (Paracontractivity). Let Γ ≥ 0, T ≥ 1. An
OMAS is said to be “(Γ, T )-paracontractive” w.r.t. ||·||∞ if
there exists γ ∈ [0, 1) such that for all k ≥ 0 and for all
x ∈ Rm|Vk| it holds

||(gk+T ◦···◦gk+1)(x)−x̂k||∞≤max{γ||x−x̂k||∞,Γ}, (3)

where {x̂k : k ∈ N} is the TPI of the OMAS, and
Vk = · · · = Vk+T−1.

Remark 1. Note that “contractive” OMASs considered
in [32, Definition 3.2] – where the contraction generally
refers to the distance between any two trajectories – are
a special class of “paracontractive” OMASs considered in
this manuscript – where the contraction refers to the distance
between any trajectory and the TPI.

Since our definition of paracontractivity allows the system
to be expansive at each time step, while being paracontractive
over a longer time window of length T , there is the need of
having a bound on the rate of expansiveness. Thus, we also
introduce the definition of “slow expansiveness”.

Definition 3 (Slow expansiveness). Let Λ ≥ 0. An
OMAS is said to be “Λ-slowly expansive” w.r.t. ||·||∞ if for



all k ≥ 0 and for all x ∈ Rm|Vk| it holds

||gk+1(x)− x̂k||∞ ≤ ||x− x̂k||∞ + Λ, (4)

where {x̂k : k ∈ N} is the TPI of the OMAS.

Concluding this section, we introduce a notion akin to
a weak form of Lyapunov stability for OMASs. While for
autonomous (time-invariant and with no inputs) and size-
invariant systems the stability is a property of an equilibrium
point, in our scenario of time-varying and size-varying
systems the stability becomes a property of the trajectory
of the point of interest, which we call “open stability”.

Definition 4 (Open stability). Consider an OMAS with
state evolution {xk : k ∈ N}. Its TPI {x̂k : k ∈ N} is said
to be “open stable” w.r.t. ||·||∞ if there is a stability radius
R ≥ 0 with the following property: for every ε > R, there
exists δ > 0 such that:

||x0 − x̂0||∞ < δ ⇒ ||xk − x̂k||∞ < ε, ∀k ≥ 0.

Definition 5 (Global asymptotic open stability).
Consider an OMAS whose TPI {x̂k : k ∈ N} is open stable
with stability radius R ≥ 0. The TPI is said to be “globally
asymptotically open stable” w.r.t. ||·||∞ if all trajectories
converge to within a distance of R from the TPI:

lim sup
k→∞

||xk − x̂k||∞ ≤ R.

We note that the use of the infinity norm ||·||∞ obviates the
necessity for distance normalization by the number of agents.
In contrast, when adopting any other norm ||·||p with a finite
p ≥ 1, normalization becomes imperative for ensuring a
fair comparison of distances evaluated in spaces of different
dimensions, as highlighted in [32, Definition 3.3] for the
Euclidean norm ||·||2. Indeed, when the ||·||∞ is employed,
the stability radius remains bounded even if the number
of agents increases over time, provided that the distance
between each new agent and its corresponding component
in the TPI remains bounded.

III. STABILITY OF PARACONTRACTIVE OMASS

In order to provide sufficient conditions ensuring the
stability of an OMAS, in the sense of Definition 4, it is
necessary to put limits on the variation of the TPI and on
the process by which the agents join and leave the OMAS
during time. These limits are defined next.

Definition 6 (Bounded TPI). An OMAS with TPI
{x̂k : k ∈ N} is said to have “bounded variation” if

∃B ≥ 0 : max
r∈Rk

∣∣∣∣x̂r
k − x̂r

k−1

∣∣∣∣
∞ ≤ B, ∀k ∈ N.

Definition 7 (Bounded arrival process). Consider an
OMAS with TPI {x̂k : k ∈ N}. The arrival process is said
to be “bounded” if

∃H ≥ 0 : max
a∈Ak

||xa
k − x̂a

k||∞ ≤ H, ∀k ∈ N.

Definition 8 (OMAS dwell time). The OMAS has dwell
time Υ ∈ N if changes in the number of agents are separated
by at least Υ intervals of time, i.e.,

∃Υ ≥ 0 : Vk−1 ̸= Vk ⇒ Vk = · · · Vk+Υ, ∀k ∈ N.

We next provide a novel stability result for paracontractive
OMAS, which encompasses contractive OMAS and thus
extends the state-of-art [32, Theorem 3.8].

Theorem 1. Given an OMAS, if:
a) it is (Γ, T )-paracontractive w.r.t. ||·||∞ and γ ∈ (0, 1);
b) it is Λ-slowly expansive w.r.t. ||·||∞;
c) it admits a TPI with bounded variation with B ≥ 0;
d) its arrival process is bounded with H ≥ 0;
e) it has dwell time Υ ≥ 0.

and if Υ ≥ T − 1, then the TPI is globally asymptotically
open stable with radius

R = ρ+min{T − 1, 1}(Λ +B).

where

ρ = max

{
(T − 1)Λ + (2T − 1)B

1− γ
,Γ + TB,H

}
.

Proof: Let k be a generic time and Now let k⋆ ≥ k
be the first time at which some agents join and/or leave the
network, i.e., Vk⋆−1 ̸= Vk⋆ . Thus, no agents join or leave the
network before k⋆, i.e., Vk−1 = · · · = Vk⋆−1. By assumption
b), it also holds that no agents join and/or leave the network
for Υ ≥ T − 1 steps from k⋆, i.e., Vk⋆ = · · · = Vk⋆+T−1.
Let us define the time τ ∈ (k + 1, k + T ) as follows

τ =

{
k⋆ if k⋆ < k + T

k if k⋆ ≥ k + T
. (5)

We first find an upper bound to the distance from the
state trajectory and the TPI that holds at any time within
[k + 1, τ + T ] by exploiting the slow nonexpansiveness of
the OMAS. Let us compute

||xk⋆−x̂k⋆ ||∞=max
i∈Vk⋆

∣∣∣∣xi
k⋆−x̂i

k⋆

∣∣∣∣
∞,

=max{ max
r∈Rk⋆

||xr
k⋆−x̂r

k⋆ ||∞, max
a∈Ak⋆

||xa
k⋆−x̂a

k⋆ ||∞},

(i)

≤max{ max
r∈Rk⋆

||xr
k⋆−x̂r

k⋆ ||∞,H},

=max{ max
r∈Rk⋆

∣∣∣∣xr
k⋆−x̂r

k⋆±x̂r
k⋆−1

∣∣∣∣
∞,H},

≤max{ max
r∈Rk⋆

{
∣∣∣∣xr

k⋆−x̂r
k⋆−1

∣∣∣∣
∞+

∣∣∣∣x̂r
k⋆−x̂r

k⋆−1

∣∣∣∣
∞},H},

(ii)

≤max{ max
r∈Rk⋆

∣∣∣∣xr
k⋆−x̂r

k⋆−1

∣∣∣∣
∞+B,H},, (6)

=max{ max
r∈Rk⋆

∣∣∣∣grk⋆(xk⋆−1)−x̂r
k⋆−1

∣∣∣∣
∞+B,H},

(iii)

≤ max{ max
i∈Vk⋆−1

∣∣∣∣grk⋆(xk)−x̂r
k⋆−1

∣∣∣∣
∞+B,H},

=max{||gk⋆(xk⋆−1)−x̂k⋆−1||∞+B,H},
(iv)

≤ max{||xk⋆−1−x̂k⋆−1||∞+Λ+B,H}, (7)



where inequality (i) hold by assumption a); inequality
(ii) hold by assumption c); inequality (iii) holds because
Rk+1 ⊆ Vk; inequality (iv) holds by assumption d). Since
by assumption the arrival/departure of agents occurs only
once within [k+1, τ +T −1], from eq. (7) we conclude that
for any ∆ ∈ Ω := {1, τ − k + T − 1} it holds:

||xk+∆ − x̂k+∆||∞ ≤ max{||xk − x̂k||∞+(Λ+B), H}. (8)

We now proceed to find a tighter upper bound that holds
only at τ +T − 1 by also exploiting the paracontractivity of
the OMAS:

||xτ+T−1−x̂τ+T−1||∞= max
i∈Vτ+T−1

∣∣∣∣∣∣xi
τ+T−1−x̂i

τ+T−1

∣∣∣∣∣∣
∞
,

(i)

≤max{ max
r∈Rτ+T−1

||xr
τ+T−1−x̂r

τ+T−2||∞+B,H},

(ii)

≤max{ max
i∈Vτ+T−2

∣∣∣∣∣∣xi
τ+T−1−x̂i

τ+T−2

∣∣∣∣∣∣
∞
+B,H},

=max{ max
i∈Vτ−1

∣∣∣∣∣∣xi
τ+T−1−x̂i

τ+T−2±x̂i
τ−1

∣∣∣∣∣∣
∞
+B,H},

(iii)

≤ max{ max
i∈Vτ−1

∣∣∣∣∣∣xi
τ+T−2−x̂i

τ−1

∣∣∣∣∣∣
∞
+
∣∣∣∣∣∣xi

τ+T−1−x̂i
τ−1

∣∣∣∣∣∣
∞
+B,H},

(iv)

≤max{ max
i∈Vτ−1

∣∣∣∣∣∣xi
τ+T−1−x̂i

τ−1

∣∣∣∣∣∣
∞
+TB,H},

=max{ max
i∈Vτ−1

∣∣∣∣∣∣(giτ+T−1◦···◦gτ )(xτ−1)−x̂i
τ−1

∣∣∣∣∣∣
∞
+TB,H},

=max{||(gτ+T−1◦···◦gτ )(xτ−1)−x̂τ−1||∞+TB,H},
(v)

≤max{γ||xτ−1−x̂τ−1||∞+TB,Γ+TB,H},
(vi)

≤max{γ||xτ−2−x̂τ−2||∞+γ(Λ+B)+TB,Γ+TB,H},

≤
...

(vi)

≤max{γ||xk−1−x̂k−1||∞+γ(τ−k)(Λ+B)+TB,Γ+TB,H},
(vii)

≤ max{γ||xk−1−x̂k−1||∞+γ(T−1)(Λ+B)+TB,Γ+TB,H},

where inequality (i) holds by eq. (6) and assumptions (c)-
(e); (ii) holds because Rτ+T−1 ⊆ Vτ+T−2; (iii) holds by
triangle inequality; (iv) holds by assumpion (c); (v) holds
by assumption (a); (vi) holds by eq. (7) and assumption (b);
(vii) holds because τ ∈ [k, k + T − 1]. The last inequality
reads as:

||xτ+T−1 − x̂τ+T−1||≤ (9)
max{γ||xk−1−x̂k−1||∞+γ(T−1)(Λ+B)+TB,Γ+TB,H},

We conclude that given γ < 1 and

δ = max

{
(T − 1)Λ + (2T − 1)B

1− γ
,Γ + TB,H

}
,

then it holds

||xk − x̂k||∞ ≤ δ ⇒ ||xk1
− x̂k1

||∞ ≤ δ, k1 = τ + T.
(10)

Let us define τ1 as in eq. (5), where k is replaced by k1 and
k⋆1 ≥ k1 is the new time at which some agents join and/or
leave the network, then it holds

||xk − x̂k||∞ ≤ δ ⇒ ||xk2 − x̂k2 ||∞ ≤ δ, k2 = τ1 + T.
(11)

By induction, the bound holds also for all k1, k2, k3, . . .,
defined in a similar way. Exploiting now the punctual upper
bound in eq. (8) together with (9), we find an upper bound
to the distance from the TPI that holds at any time after k,
given by

R = δ +min{T − 1, 1}(Λ +B).

Indeed, if T = 1, then R = δ because one can directly use
eq. (9) to find a punctual upper bound; if instead T > 1, then
during an interval of length T the system changes at most
one, yielding an increase of the radius given by eq. (8). We
conclude that the TPI is open stable with stability radius R,
indeed for every ε > R it holds:

||x0 − x̂0||∞ ≤ R ⇒ ||xk − x̂k||∞ ≤ R < ε, ∀k ≥ 0.

We now prove global asymptotic open stability by consider-
ing the subsequence of states xkt

for t = 1, 2, 3, . . ., where
kt are defined by induction as in eqs. (10)-(11) and where
the initial time is k = 0. Iterating eq. (9) yields

||xkt
−x̂kt

||∞≤max{γt||x0−x̂0||∞

+((T−1)Λ+(2T−1)B)

t−1∑
i=0

γi,Γ+TB,H}.

In the limit of t → ∞, the γt goes to 0, and the geometric
series

∑t−1
i=0 γ

i goes to 1/(1− γ), yielding

lim
t→∞

||xkt
−x̂kt

||∞≤max

{
(T−1)Λ+(2T−1)B

1−γ
,Γ+TB,H

}
,

where the term on the right-hand side is δ. Therefore, by eq.
(8), we conclude that the system is globally asymptotically
open stable with stability radius R, concluding the proof.

Remark 2. If Γ = 0, and T = 1, then the system is sim-
ply paracontractive, i.e., ||gk+1x)− x̂k||∞ ≤ γ||x− x̂k||∞.
In this case, the OMAS is open stable with radius
R = max{B/(1− γ), H}, which is the counterpart of [32,
Theorem 3.8] for the infinity norm ||·||∞.

IV. THE DYNAMIC MAX-CONSENSUS PROBLEM IN
OPEN MULTI-AGENT SYSTEMS

Consider an OMAS in which each agent i with state
xi
k ∈ Rm and has access to a scalar time-varying reference

signal ui
k ∈ R. The agents can exchange information with

their neighbors according to a time-varying graph, including
it can their state yik ∈ R and auxiliary internal variables, how-
ever, the reference signal ui

k is private and not exchanged.
The dynamic max-consensus problem consists in the de-

sign of proper local update rules for estimating and tracking
the maximum ūk ∈ R among the time-varying reference
signals ūk = maxi∈Vk

ui
k.

A. Working assumptions

Assumption 1. The time-varying graph Gk = (Vk, Ek)
describing the pattern of interactions among agents in an
OMAS is undirected and connected at all times k ∈ N.



Assumption 2. There exists a minimum dwell time Υ ∈ N
between two consecutive changes in the set of agents, namely
Vk ̸= Vk−1 ⇒ Vk = Vk+1 = · · · = Vk+Υ, ∀k ∈ N.

Assumption 3. The absolute variation of the reference
signals of the agents remaining in the network is bounded
by a constant Π ≥ 0, i.e.,

∀i ∈ Rk : |ui
k − ui

k−1| ≤ Π, ∀k ≥ 0. (12)

In addition, we assume that join/leave events cause only
bounded variations in the maximum the reference signals.

Assumption 4. The reference signals lie within a set of
size Ξ ≥ 0, i.e.,

|ūk − uk| ≤ Ξ, ∀k ≥ 0. (13)

The last assumption we make is on the time-varying
diameter δk of the network, i.e., the longest shortest path
between any two agents. Although the number nk = |Vk|
of the agents within the network can grow unbounded, we
assume there exists an upper bound δ̄ on the diameter δk.
Note that this assumption is naturally satisfied for networks
with a finite number of agents, but it can hold also for
networks with an infinite number of agents.

Assumption 5. The diameter of the network is bounded
by a constant δ̄ > 0, i.e., δk ≤ δ̄, ∀k ≥ 0.

B. Proposed protocol and stability results

Consider a network of agents whose pattern of interaction
is described by a time-varying and open undirected graph
Gk = (Vk, Ek). We denote the proposed protocol by Open
Self-Tuning Dynamic Max-Consensus (OSTDMC) Protocol,
which requires that the agents self-tune and exchange two
additional state variables [33]: µi

k ∈ R that keeps track of
the maximum variation in the reference signals, and αi

k ∈ R
that controls the decreasing rate of the state variable yik ∈ R.
The state variables are stacked as follows

xi
k = [yik, µ

i
k, α

i
k]

⊤ ∈ R3, ∀i ∈ V.

The OSTDMC Protocol is ruled by the following local
updates, which makes use of two parameters θ ≥ β > 0,

yik=

 max
j∈N i

k−1

{
yjk−1− avg

ℓ∈N i
k−1

αℓ
k−1,u

i
k

}
if i∈Rk,

ui
k+1 if i∈Ak,

µi
k=

 max
j∈N i

k−1

{µj
k−1,θ+(ui

k−ui
k−1)} if i∈Rk,

β if i∈Ak,

αi
k=


αi
k−1 if i∈Rk∧yik>yik−1,

µi
k if i∈Rk∧yik<yik−1,

β otherwise.

(14)

In the next theorem, we characterize the stability radius,
as in Definition 4, associated to the OSTDMC. The result
follows by a direct verification of all conditions of Theo-
rem 1, thus constituting a tutorial example on how to exploit
the theory on open networks proposed in this manuscript. A
formal proof of this result is left to future work.

Theorem 2. Consider an OMAS executing the
OSTDMC Protocol under Assumptions 1-5 such that
Υ ≥ δ̄. If the protocol is designed with θ ≥ β > 0, then the
OMAS is open stable with radius R as in Theorem 1 where

T = δ̄ + 1, Γ = (δ̄ + 1)(θ +Π),

B = Π, Λ = θ +Π+ δ̄β,

H = Ξ, γ = max{0, ȳ0−ū1−β−(Υ−δ̄)(θ+Π)
||y0−ŷ0||∞

}.
(15)

C. Numerical Simulation

We now discuss a numerical simulation of the OSTDMC
protocol in a network which initially has n = 100. At any
time k ≥ 0, a node can join the network with a probability
pjoink ∈ [0, 1], establishing connections with any of the nodes
in the network, or leave it with a probability pleavek ∈ [0, 1],
maintaining the network connected, such that there exists a
dwell time Υ between any two of these events. In particular:

[pjoink , pleavek ] =


[0.4, 0.1] if k ≤ 2000

[0.1, 0.8] if k ∈ (2000, 3000]

[0.3, 0.3] if k > 3000

.

The initial graph is randomly generate with diameter
δ0 = 5, and we assume that such value works as an upper
bound on the diameter at any time, i.e., δk ≤ δ̄ := 5 for
all k ≥ 0. In turn, we consider a dwell time of Υ =
5δ̄ = 25. The initial state values of the agents yi0 are
chosen uniformly at random in the interval [10, 11], while
the other state variables are initialized at a very small value
µi
0 = αi

0 = β := 10−10. The time-varying reference signals
are sinusoidal signals given by

ui
k = ui

k−1 +Πsin

(
k

50

)
, Π = 0.01,

whose initial value is randomly chosen in the interval [0, 1].
Thus, the maximum variation of the signals is Π = 0.01 and
the maximum variation of the maximum signal is Ξ = 2.
Finally, we set the minimum decreasing rate at θ = Π/2.
Therefore, Theorem 2 ensures that the OMAS is open stable
with stability radius equal to R = 2.025. Since β ≈ 0 is
almost zero, it follows that the TPI is aproximately equal to
a vector where all entries are equal to the maximum reference
signal, ŷk−1 ≈ ūk1. Figures 1-2 show the evolution of the
number of agents in the network, showing changes in the
order of 30%, and also the distance between the state yk
of the agents and the trajectory of points of interest (TPI)
ŷk. This distance remains bounded after decreasing during a
transient phase that leads to a state of approximate consensus
around the value of interest, that is the maximum reference
signal. This behavior is consistent with Theorem 2, where the
stability radius of R = 2.05 appears to be a tight estimate.

V. CONCLUSIONS

Standard system-theoretic tools do not apply directly to
systems with a time-varying dimension of the state space.
In this paper, we exploited the infinity norm to define the
distance between states of different dimensions, then we
showed that open multi-agent systems, whose dynamics (up



to arrivals and departures of agents) can be defined by
paracontractive maps, are stable according to our framework.
This contribution generalizes previous results for contractive
OMAS. Finally, we apply the results to prove the con-
vergence properties of a novel algorithm which adapts the
dynamic max-consensus protocol to open networks.
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